

## Northern Engraving Corporation

### Cooperative Environmental Agreement Annual Report 2008

### Northern Engraving Corporation

## Cooperative Environmental Agreement Annual Report 2008

#### Contents

| Introduction                                                                                                                                                                            | page 3               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Collective Summary of 2008                                                                                                                                                              | 3                    |
| Cooperative Agreement Report Interested Persons Group Commitments to Superior Environmental Performa Compliance Operational Flexibility Overall Assessment of the Success of the Agreem | 5<br>6               |
| Appendices                                                                                                                                                                              |                      |
| 1. Sparta Data Objectives and Targets for 2008/2009                                                                                                                                     | 7<br>11              |
| <ol> <li>Holmen         Data         Objectives and Targets for 2008/2009     </li> </ol>                                                                                               | 13<br>17             |
| <ul> <li>3. West Salem</li></ul>                                                                                                                                                        | 19<br>23<br>25<br>27 |

### Northern Engraving Corporation

#### Introduction

On June 10, 2002, following a Public Comment Period and formal public hearing, the Wisconsin Department of Natural Resources (WDNR) and Northern Engraving Corporation (NEC) signed an Environmental Cooperative Agreement that included the NEC facilities in Sparta and Holmen, Wisconsin. This Agreement was amended on June 23, 2003, to allow the inclusion of the West Salem and Galesville, Wisconsin, facilities. It was established and is maintained pursuant to Section 299.80, Wis. Statutes, to evaluate innovative environmental regulatory methods including whole-facility regulation. In April, 2006, the Galesville facility was closed and, therefore, withdrawn from the Agreement.

On June 7, 2007 the WDNR and NEC signed a five year extension to the Environmental Cooperative Agreement. Due to time constraints this extension was issued without planned amendments. On September 4, 2007 an amendment to the extended Cooperative Agreement was signed by both parties. The amended agreement allowed NEC to discontinue the six month reporting requirement of actual facility wide VOC and HAP emissions and allowed more time for construction and initial operation for future construction permits.

Northern Engraving Corporation remains an active and dedicated steward of the environment. Internally, the environmental policy commits the company to reducing waste, continually improving processes, and doing no harm to the environment. All facilities are registered to the international environmental standard, ISO 14001, and receive annual audits from our third-party registrar Quality Management Institute. The environmental management system gives the plants the tools needed to analyze environmental impacts, set objectives and targets, develop supporting programs, review results and redirect efforts. By using these tools and developing employee involvement, each facility has experienced ongoing success (See Appendices).

#### **Collective Summary of 2008**

Data from calendar year 1996 through calendar year 2008 show that plant emissions of volatile organic compounds (VOC) and hazardous air pollutants (HAP) from the three Cooperative Agreement facilities decreased 77% (236 tons/year) and 93% (111 tons/year), respectively. In comparing the three facilities' 2008 emissions to 2007, VOCs and HAPs were reduced 15% (12.5 tons/year) and 18% (1.2 tons/year), respectively.

In 2008, these facilities used 81% less water than in 1996.

During the 1996-2008 period, the three Cooperative Agreement facilities' generation of hazardous and solid wastes decreased 80% (47,090 gallons/year) and 8% (1,288 tons/year), respectively. Non-hazardous waste increased by 60% since 1996. After having peaked in 2005 non-hazardous waste generation has steadily declined. Generation of this type of waste in 2008 vs. 2007 decreased by almost 18% or 1,700 gallons.

The environmental management system was instrumental to the success of the corporation's environmental initiatives. In 2008, the Cooperative Agreement facilities set a total of 10 objectives accompanied by 13 specific targets (7 of which were numeric targets). Some of the significant environmental successes of 2008 were the following:

Reductions in the use of natural gas at the three facilities resulted in 5% reduction in carbon dioxide emissions from fuel burning.

Process improvements for the purpose of improving product yield resulted in fewer wastes and emissions in all of NEC's facilities.

Holmen reduced its hazardous waste generation by 1,200 gallons.

West Salem was able to implement the use of a phosphate free cleaner for aluminum, reducing phosphate discharges by 69%.

#### **Cooperative Agreement Report**

#### **Interested Persons Group:**

On July 15, 2008, the Northern Engraving Interested Persons Group, represented by Dr. Ronald T. Amel, Mark Wienkes, Tim Vernier Jordan Skiff, Mark Harings, Darrell Zietlow and Randy Nedrelo met in Sparta. After an update of Northern Engraving's business situation and air permit applications in 2008, the Group reviewed the major environmental projects undertaken during the past year, the environmental targets and objectives for 2008. The corporate staff then updated the members on the progress of remediation activities at the Sparta facility; showing pictures of the installation of remediation equipment. Since Dr. Ronald T. Amel and Cindy Struve were unable to attend an electronic copy the presentation was sent to them.

Because of the holidays and Northern Engraving being shut down for two weeks in December; NEC conducted a virtual meeting. A report was sent to all members via email. This included information regarding Northern Engraving's current business situation, recent construction permits, the results of the 2008 ISO 14001 environmental objectives, and the progress of the remediation projects at the Sparta facility. Group members were given the opportunity to contact Northern Engraving with comments or questions; however, no comments were received.

#### **Commitment to Superior Environmental Performance:**

Internal audits of the environmental management system continue to be conducted at each facility. All elements of the environmental management system are audited at least once annually. These audits are conducted by trained and impartial auditors from corporate headquarters or another Northern Engraving facility.

At each facility an annual surveillance audit of the environmental management system was conducted by a third-party auditor. For 2008, these audits totaled six man-days. There were no non-conformances found. Only two opportunities for improvement were identifies and these were at Sparta. None of these required a formal corrective action.

#### Sparta

"Consider enhancing the training efforts for the Spanish speaking population to ensure key points of the Policy are understood as well as other key requirements of the EMS."

"Consider updating the internal audit schedule to ensure documentation reflects that Element 4.4.1 is covered during the audit process (the various checklists do suggest and indicate that 4.4.1 is audited but form F-2179-B does not list this section). Also consider more clearly documenting when an "observer" is utilized during the internal audits verses an audit team member."

Each manufacturing facility reviewed its environmental aspects for their operations and established its own significant environmental aspects based on the degree of impact on health and the environment, and the frequency of this impact. Objectives and targets were then established to address the significant environmental aspects. Environmental objectives and targets for 2008 and 2009 can be reviewed in greater detail in the appendices.

#### Compliance:

On July 15<sup>th</sup> EPA conducted a RCRA (waste management) inspection at the West Salem facility. There were no violations found.

On December 15<sup>th</sup> the Wisconsin DNR conducted an air management inspection at the Sparta facility. There were no violations found.

Holmen was not inspected in 2008.

#### **Operational Flexibility:**

(For a brief explanation of acronyms and terms, see the glossary at Appendix 5)

#### Time saved in obtaining air permits:

One construction permit was submitted in 2008. Formal written permission to construct was received in 48 days following submittal. Time saved under this Agreement is estimated to be 35 days

#### Time saved by the reduction in record keeping and administrative requirements:

These were established during the first year of the Agreement and are as follows:

Requirement Eliminated: Approximate Time Saved:

Calculations for demonstrating RACT compliance

West Salem 3.5 hours/day Sparta 2.5 hours/day

Calculation of VOC and HAP emissions 0.75 hr/day per facility

Compiling formulas for demonstrating LACT compliance

Sparta 10 hr/month Holmen 10 hr/month West Salem 20 hr/month

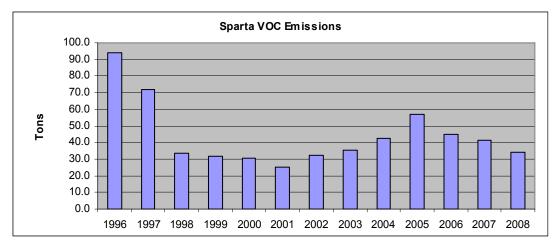
Discontinuation of reporting the above calculations

10 hr/yr per facility

as part of the annual monitoring summary.

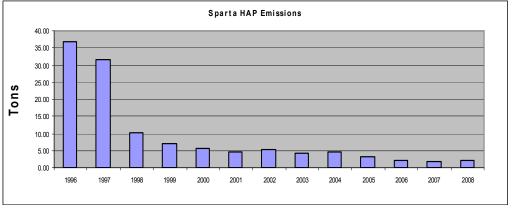
#### **Energy savings from avoiding the use of the thermal oxidizer:**

Prior to the Cooperative Agreement, West Salem was required to operate two thermal oxidizers and Sparta was required to operate one thermal oxidizer from 1 May through 31 September to meet permit requirements. It is estimated that West Salem and Sparta avoided the usage of over 2400 MCF and 2500 MCF/month respectively, of natural gas associated with thermal oxidation for RACT.


#### **Overall Assessment of the Success of the Agreement:**

For NEC the Cooperative Agreement offers a valuable tool for competing in an ever changing and highly competitive, global marketplace. The environmental management systems at Sparta, West Salem, and Holmen are now ten, nine and six years old, respectively. As mature and successful systems they must concentrate on retaining environmental improvements while searching even deeper in their processes for innovative pollution prevention and waste reduction measures. The time saved, as a result of this agreement, allows NEC personnel to devote more of its effort toward pollution prevention and waste reduction measures. Reducing waste not only benefits the environment, it also helps NEC to contain its costs.

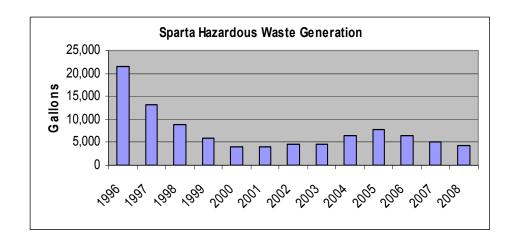
A strong working relationship has been developed with the Wisconsin Department of Natural Resources (WDNR). NEC values this working relationship and looks forward to continuing it into the future; whether the continuation of this Agreement or ultimately through the Green Tier program.


Appendix 1: Sparta Air Emissions

|                   | 1996    | 1997      | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|-------------------|---------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| VOCs (tons/year)  | 94.3    | 72.0      | 33.4  | 32.0  | 30.3  | 25.4  | 32.5  | 35.4  | 42.7  | 57.0  | 44.9  | 41.4  | 34.0  |
| NOx               | 5.7     | 7.6       | 5.1   | 4.0   | 4.7   | 4.62  | 5.00  | 5.30  | 5.71  | 5.90  | 4.90  | 4.46  |       |
| CO                | 1.2     | 1.7       | 2.0   | 2.8   | 2.9   | 2.63  | 2.10  | 2.00  | 2.52  | 2.61  | 2.47  | 2.22  |       |
| CLEAN AIR ACT C   | HEMICAL | S (lb/yr) |       |       |       |       |       |       |       |       |       |       |       |
| CHEMICAL NAME     | 1996    | 1997      | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
| Glycol Ethers     | 9,877   | 12,490    | 3,704 | 4,900 | 5,910 | 4,003 | 4,197 | 4,639 | 5,180 | 0     | 8002  | 2,800 | 1,800 |
| Cumene            | 258     | 101       | 178   | 67    | 42    | 182   | 12    | 9     |       |       |       |       |       |
| Dimethyl-         |         |           |       |       |       |       |       |       |       |       |       |       |       |
| ,formamide        | 84      | 819       | 435   |       |       |       |       |       |       |       |       |       |       |
| Ethyl Benzene     | 3,210   | 2,587     | 1,204 | 895   | 771   | 577   | 831   | 455   | 400   | 600   | 400   |       | 400   |
| Formaldehyde      | 8       | 2         | 3     | 2     | 3     | 4     | 6     | 5     |       | 16    |       |       |       |
| Hydrogen Fluoride | 140     | 140       | 252   | 314   | 305   | 265   | 197   | 192   |       |       |       |       |       |
| 2,2,4 Trimethyl-  |         |           |       |       |       |       |       |       |       |       |       |       |       |
| pentane           |         |           |       |       |       |       | 184   | 214   | 200   | 280   | 200   | 200   |       |
| Isophorone        | 1,085   | 3,917     | 1,986 | 983   | 558   | 314   | 338   | 101   | 880   | 1,300 | 400   |       |       |
| Methyl Alcohol    | 204     | 187       | 112   | 84    | 57    | 31    | 95    |       |       |       |       |       |       |
| MEK               | 13,859  | 11,532    | 1,753 | 867   | 923   | 540   | 232   | 142   | 140   | 480   | 0     |       |       |
| MIBK              | 7,248   | 4,094     | 84    | 136   | 168   | 84    | 138   |       | 60    | 20    |       |       |       |
| Methylene Chlo-   |         |           |       |       |       |       |       |       |       |       |       |       |       |
| ride              | 2,201   | 2,351     | 5,089 |       |       |       | 101   | 166   | 220   | 360   | 200   |       |       |
| Naphthalene       | 202     | 1,565     | 387   | 81    | 120   | 76    | 223   | 117   | 220   | 200   | 200   | 200   | 200   |
| Toluene           | 21,636  | 16,431    | 844   | 736   | 245   | 315   | 171   | 28    | 200   | 640   | 600   | 400   | 400   |
| Xylene            | 11,297  | 4,722     | 2,749 | 4,805 | 2,387 | 2,429 | 3,468 | 1,936 | 1,240 | 2,240 | 1,200 |       | 1,200 |
| Perchloroethylene | 2,152   | 2,398     | 1,665 |       |       |       | 55    | 91    | 140   | 200   | 200   |       |       |
| Total Tons        | 36.73   | 31.67     | 10.22 | 6.94  | 5.75  | 4.42  | 5.13  | 4.11  | 4.48  | 3.23  | 2.20  | 1.80  | 2.00  |



18% reduction in 2008. More processes were modified to eliminate process steps where able and still meet specifications. Reduction in production levels also contributed to this decrease.

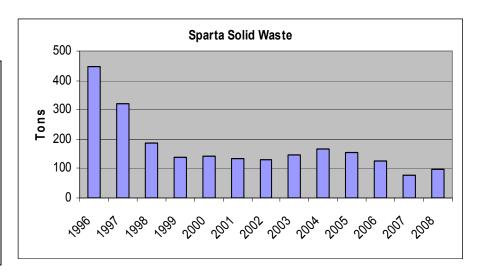

11% increase in 2008. HAP emission levels remain at historical lows.



### Appendix 1: Sparta Hazardous Waste Generation

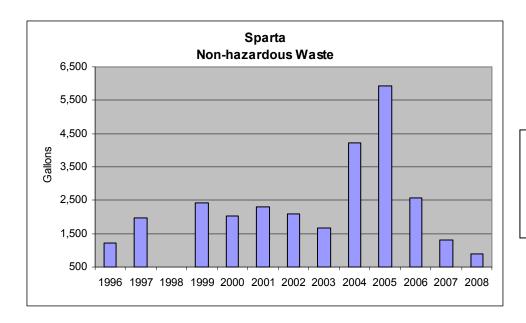
|                  |      | 1996   | 1997   | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|------------------|------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Solvent Waste    | gals | 9,374  | 5,388  | 4,309 | 1,762 | 439   | 1,265 | 1,705 | 1,045 | 1,210 | 1,540 | 1,210 | 935   | 880   |
| Coating (Design) | gals | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 440   | 440   | 605   | 330   | 330   | 220   |
| Liquid Coating   | gals | 8,470  | 4,565  | 2,200 | 1,678 | 1,210 | 825   | 935   | 660   | 990   | 1,375 | 880   | 770   | 605   |
| Solid Coating    | gals | 1,650  | 1,045  | 852   | 1,045 | 1,169 | 715   | 660   | 550   | 770   | 935   | 770   | 660   | 550   |
| Ink Waste        | gals | 1,540  | 1,375  | 1,072 | 729   | 798   | 550   | 550   | 550   | 550   | 550   | 550   | 440   | 275   |
| Norlens Waste    | gals | 605    | 478    | 522   | 358   | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Alodine Sludge   | gals | 0      | 385    | 0     | 220   | 138   | 110   | 0     | 55    | 110   | 55    | 605   | 0     | 0     |
| Still bottoms    | gals | 0      | 0      | 0     | 165   | 385   | 495   | 660   | 550   | 660   | 825   | 605   | 660   | 550   |
| CWU              | gals | 0      | 0      | 0     | 0     | 0     | 0     | 0     | 1100  | 2,200 | 2,475 | 1,760 | 1,650 | 1,320 |
| Hydroxide Sludge | tons | 53.8   | 0      | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| Sparta Totals    | gals | 21,639 | 13,236 | 8,955 | 5,957 | 4,139 | 3,960 | 4,510 | 4,950 | 6,930 | 8,360 | 6,710 | 5,445 | 4,400 |

<sup>\*</sup> Hazardous waste sent to a Treatment Storage Disposal facility is included in this table. Hazardous waste distilled internally by Northern Engraving is excluded.




Hazardous waste reduction was a target in 2008. Reductions resulted from employee training, control of solvents for clean up and process changes to reduce manufacturing process steps.

#### Solid Waste

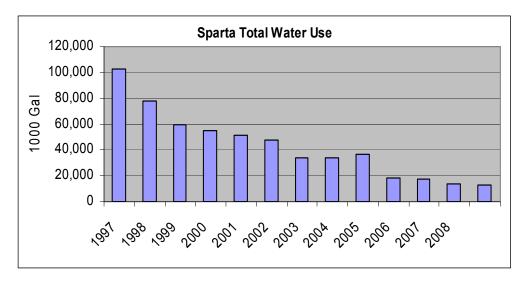

**Tons** 448 

22% increase in 2008. This was partially the result of the collapse of the plastic recycling market. For a period of several months there was no outlet for the recycled plastics. When a new recycler was found some materials that were previously recycled now had to be discarded as waste. Reducing solid waste generation is an environmental objective for 2009.



### Appendix 1: Sparta Non - Hazardous Waste Generation

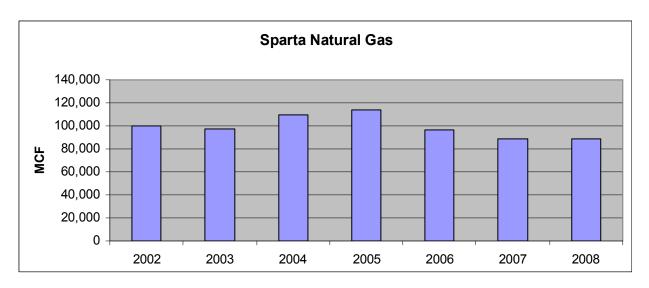
| Hazardous Waste         | Unit   | 1996  | 1997  | 1998 | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008 |
|-------------------------|--------|-------|-------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| Damascene Sludge        | gals.  | 1,100 | 1,760 | 275  | 275   | 495   | 660   | 660   | 55    | 660   | 1,100 | 935   | 1,100 | 660  |
| Oil Absorbents          | gals.  | 110   | 220   | 110  | 1,210 | 1,210 | 1,320 | 1,265 | 1,408 | 3,245 | 4,235 | 1,155 | 0     | 0    |
| Norlens Waste           | gals.  | 0     | 0     | 0    | 55    | 330   | 330   | 165   | 220   | 220   | 330   | 330   | 220   | 165  |
| Hydroxide Sludge/ Waste | -cubic |       |       |      |       |       |       |       |       |       |       |       |       |      |
| water Treatment Sludge  | yds    | 0     | 12    | 24   | 36    | 24    | 24    | 36    | 12    | 12    | 12    | 0     | 0     | 0    |
| Totals                  | sgals. | 1,210 | 1,980 | 385  | 2,420 | 2,035 | 2,310 | 2,090 | 1,683 | 4,235 | 5,940 | 2,585 | 1,320 | 880  |

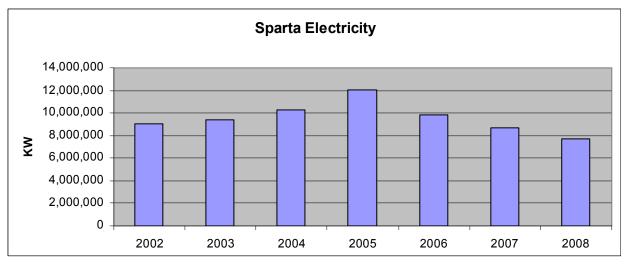



33% reduction in 2008. Continuation of programs initiated prior to 2008, along with declining production were the main reasons for the reductions.

#### **Water Use**

Total Water 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 1000 gal 102,783 77,764 59,139 54,528 18,145 17,096 51,394 47,439 33,724 34,300 36,953 13,890 13,158

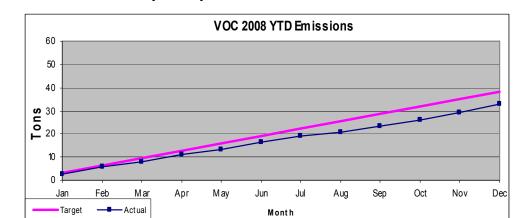

5% reduction from 2007. Work is being transferred from another Northern Engraving facility to Sparta. This will include several additional washers. Because of this water use reduction is a target in 2009.




### Appendix 1: Sparta Energy Use

|                   | 2002      | 2003      | 2004       | 2005       | 2006      | 2007      | 2008      |
|-------------------|-----------|-----------|------------|------------|-----------|-----------|-----------|
| Natural Gas (MCF) | 99,778    | 97,383    | 109,193    | 114,288    | 96,348    | 88,547    | 88,289    |
| Electricity (KW)  | 9,055,249 | 9,399,784 | 10,305,400 | 12,032,000 | 9,806,000 | 8,688,000 | 7,726,000 |

Reductions of 0.3% for natural gas and 5% for electricity from 2007. Last years projects included continued removal of unnecessary lighting, rewiring to allow lighting and equipment to be shut off when not in use, A complete air leak survey was completed in 2008. Cost constraints hindered progress in reducing natural gas use in 2008.

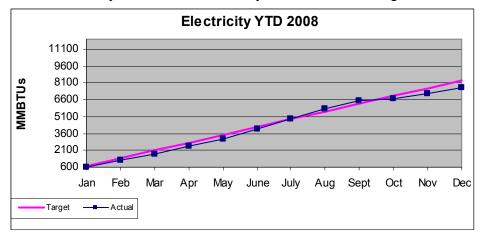


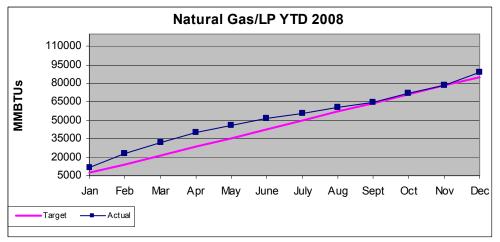



#### **Appendix 1: Sparta's Objectives and Targets Program**

#### Results for 2008

Objective 1: Reduce facility VOC emissions by 4% CY 2008 vs. CY 2007. VOC emissions declined by nearly 18% in 2008.



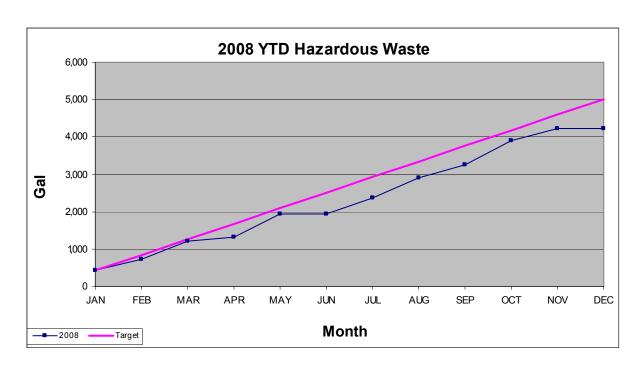


#### Objective 2: Reduce facility energy consumption.

Target: Reduce facility electricity consumption by 4% CY 2008 vs. CY 2007.

Target: Reduce facility Natural Gas/LPG consumption by 4% CY 2008 vs. CY 2007.

2008 electricity use was reduced by 5% while natural gas/LPG use decreased 0.3%.






#### Appendix 1: Sparta's Objectives and Targets Program - Continued

Objective 3: Reduce hazardous waste generation by 2% CY2008 vs. CY2007.

Hazardous waste generation was reduced by 17% in 2008.

-



#### **Sparta's 2009 Objectives and Targets**

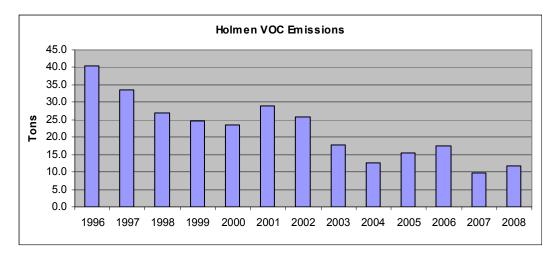
- 1. Objective: Reduce facility solid waste generation by 5% CY 2009 vs. CY 2008.
- 2. Objective: Reduce facility hazardous waste generation.
  - Target: Develop a program to reduce the amount of solvent used in towels

for clean up by 12/31/09.

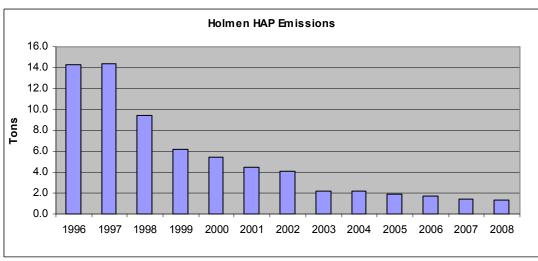
Target: Investigate the waste from using PM Acetate for clean up of coaters.

Submit a report to facility management by 4/30/09.

3. Objective: Reduce facility water use.


Target: Optimize the volume of water used in washers that are being moved

into the facility.


(Note: Sparta will consider a water reduction target in June of 2009.)

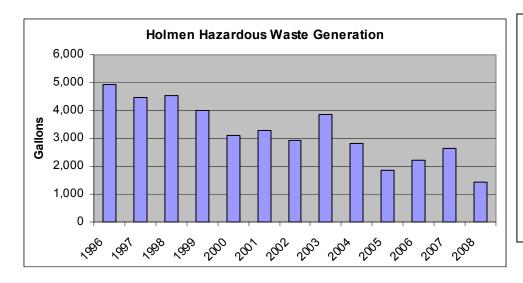
### Appendix 2: Holmen Air Emissions

|                         | 1996   | 1997      | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|-------------------------|--------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| VOCs (tons/yr)          | 40.5   | 33.6      | 27.0  | 24.6  | 23.6  | 29.0  | 25.7  | 17.7  | 12.7  | 15.6  | 17.4  | 9.7   | 11.9  |
| NOx                     | 1.0    | 1.2       | 0.98  | 1.02  | 0.98  | 0.85  | 0.72  | 0.55  | 0.4   | .54   | 0.62  | 0.74  |       |
| СО                      | 0.2    | 0.2       | 0.20  | 0.20  | 0.20  | 0.17  | 0.14  | 0.11  | 0.1   | .11   | 0.12  | 0.14  |       |
| <b>CLEAN AIR ACT CI</b> | HEMICA | ALS (lb/y | /r)   |       |       |       |       |       |       |       |       |       |       |
| CHEMICAL NAME           | 1996   | 1997      | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
| Glycol Ethers           | 9,792  | 9,073     | 8,987 | 8,674 | 8,077 | 8,080 | 6,893 | 3,660 | 3,980 | 3,420 | 3,200 | 2,600 | 2,400 |
| Cumene                  | 351    |           | 3     | 14    | 17    | 29    | 11    | 2     |       |       |       |       |       |
| Ethyl Benzene           |        | 322       | 11    | 23    | 3     | 5     | 56    | 25    | 40    |       |       |       |       |
| n-Hexane                |        | 238       | 414   | 102   | 86    | 86    | 391   | 340   |       |       |       |       |       |
| Isophorone              | 1,291  | 36        | 628   | 737   | 225   | 5     | 2     |       |       |       |       |       |       |
| MEK                     | 3,104  | 2,017     | 3,403 | 1,513 | 1,111 | 330   | 82    | 84    | 240   | 200   |       |       |       |
| MIBK                    | 58     |           |       | 15    |       |       |       |       |       |       |       |       |       |
| Naphthalene             | 49     | 113       | 63    | 158   | 7     | 15    | 50    | 20    | 20    | 80    | 200   | 200   | 200   |
|                         | 13,49  |           |       |       |       |       |       |       |       |       |       |       |       |
| Toluene                 | 1      | 13,618    | 3,778 | 152   | 307   | 62    | 88    | 150   |       | 20    |       |       |       |
| Xylene                  | 507    | 3,418     | 1,541 | 910   | 1,031 | 406   | 523   | 28    |       |       |       |       |       |
| TOTAL (tons)            | 14.3   | 14.4      | 9.4   | 6.1   | 5.4   | 4.5   | 4.0   | 2.2   | 2.2   | 1.9   | 1.70  | 1.40  | 1.30  |



VOC emissions increased 23%. Changes in production mix were the primary reason for this increase. Automotive applications make up a higher percentage of the job mix and because of more stringent specifications, most automotive parts require solvent based inks vs. UV inks.



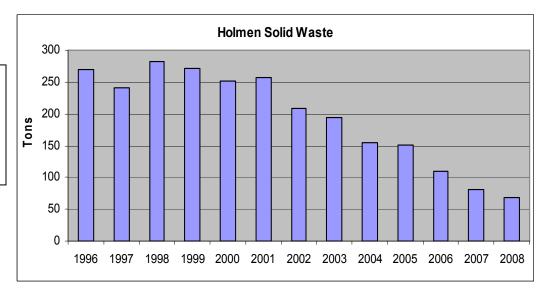

HAP emissions decreased by 7%. HAP emissions at Holmen remains at historic lows.

**Appendix 2: Holmen Hazardous Waste Generation** 

|           |     | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|-----------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Solvent   |     |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Waste     | gal | 3,224 | 2,548 | 3,068 | 2,338 | 1,354 | 1,485 | 1,375 | 2,365 | 1,540 | 935   | 935   | 1,100 | 275   |
| Ink Waste | gal | 1.705 | 1.925 | 1.485 | 1.650 | 1,760 | 1.815 | 1.540 | 1.485 | 1.265 | 880   | 1.265 | 1.760 | 1.155 |
| Flexlens  | gal | ,     | ,     | ,     | ,     | ,     | ,     | ,     | ,     | ,     | 55    | ,     | ,     | ,     |
| **Total   | gal | 4,929 | 4,473 | 4,553 | 3,988 | 3,114 | 3,300 | 2,915 | 3,850 | 2,805 | 1,870 | 2,200 | 2,860 | 1,430 |

<sup>\*</sup>Hazardous waste sent to a Treatment Storage Disposal facility is included in this table. Hazardous waste distilled internally by Northern Engraving is excluded.

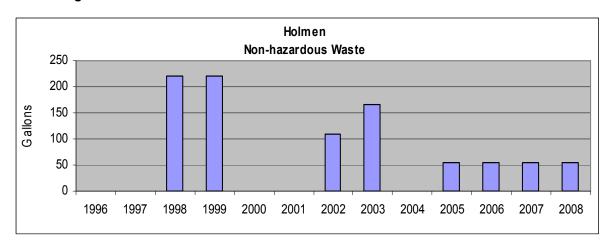
<sup>\*\*</sup>Total amounts for 2004, 2005, 2006, 2007 and 2008 were reduced 715, 1,100, 1,540, 2640 and 1430 gallons respectively from previous reports to reflect distillation done on-site. These amounts were not wasted.




46% decrease in 2008. Investigation showed that distillable solvents were being sent out as hazardous waste. Retraining corrected that. Additionally, ink mixers controlled the volume of ink issued to the screeners based on the number of sheets and the ink coverage on the sheets, for each individual job.

#### **Solid Waste**

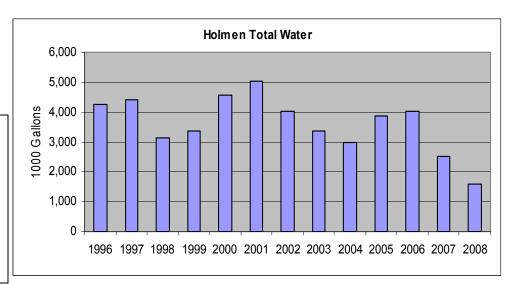
tons 


A 14% reduction in 2008, primarily as a result of continued recycling and improvements in product yield.



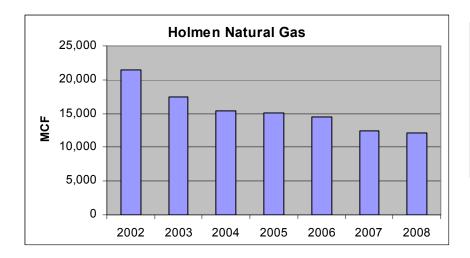
Appendix 2: Holmen
Non-Hazardous Waste Generation

| H | a | za | rc | lo | us |  |
|---|---|----|----|----|----|--|
|---|---|----|----|----|----|--|


| Waste             | Unit  | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 |
|-------------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Oil Absorbents    | gals. | 0    | 0    | 0    | 220  | 0    | 0    | 110  | 0    | 0    | 0    | 0    | 0    | 0    |
| Screen Clean Sol- | _     |      |      |      |      |      |      |      |      |      |      |      |      |      |
| vent (1 time)     | gals. | 0    | 0    | 220  | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Digital Ink Waste | gals. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 165  | 0    | 55   | 55   | 55   | 55   |
| Holmen Total      | gals. | 0    | 0    | 220  | 220  | 0    | 0    | 110  | 165  | 0    | 55   | 55   | 55   | 55   |



#### **Water Use**


|         | 1996  | 1997  | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 1000    |       |       |       |       |       |       |       |       |       |       |       |       |       |
| Gallons | 4,242 | 4,421 | 3,123 | 3,381 | 4,561 | 5,024 | 4,013 | 3,371 | 2,989 | 3,861 | 4,019 | 2,517 | 1,597 |

Very little water is used in Holmen's manufacturing processes. 2008 water use was reduced by 36%. This reduction was a result of less work in screening; corresponding to needing to make and reclaim fewer screens.




#### Appendix 2: Holmen Energy Use

|                   | 2002      | 2003      | 2004      | 2005      | 2006      | 2007      | 2008      |
|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Natural Gas (MCF) | 21,461    | 17,432    | 15,419    | 15,059    | 14,436    | 12,419    | 12,180    |
| Electricity (KW)  | 4,029,980 | 4,039,440 | 3,609,900 | 3,735,600 | 3,542,000 | 2,978,000 | 2,620,000 |



The 5% reduction in natural gas use was the result of less use of the screening ovens due to process changes and reduced sales. Additionally, waste heat from air compressors is now used to heat a neighboring room.



12% reduction in 2008. The reductions were achieved by adding switches to allow unneeded lights to be turned off and conducting a facility wide air leak survey.

#### **Appendix 2: Holmen's Objectives and Targets Program**

#### Results for 2008

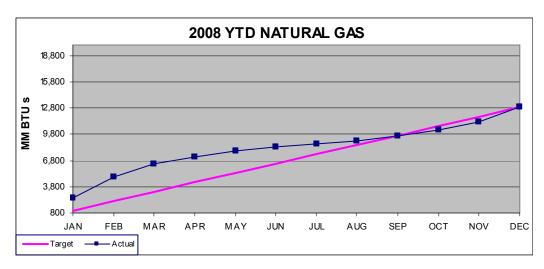
**Objective 1:** Improve the environmental efficiency of existing jobs.

Target: Convert 50 jobs to screening jobs to litho or digital printing processes by

6/30/08.

Target: Convert and additional 25 jobs by 12/31/09.

46 jobs were converted by 6/30/08. In 2008 a total of 54 jobs were converted. As this project progressed, no more repeat jobs were available to convert. New jobs are automatically processed using litho or digital printing processes if appropriate. This is an example of changing the way of doing business as a result of setting environmental objectives.


**Objective 2:** Reduce facility energy consumption

Target: Reduce natural gas/LPG consumption by 5% CY 2008 vs. CY 2007

Natural gas/LPG consumption was reduced 5%.

Target: Reduce electricity consumption by 5% CY 2008 vs. CY 2007

Electricity consumption was reduced 10%.





#### Appendix 2: Holmen's Objectives and Targets Program - Continued

**Objective 3:** Reduce hazardous waste generation by 20% CY2008 vs. CY2007

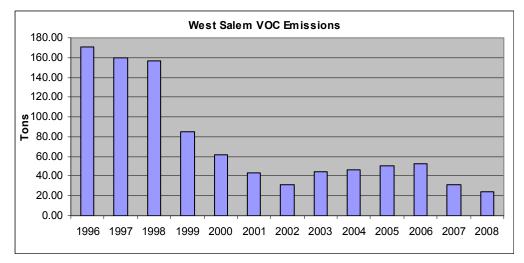
Hazardous waste generation was reduced by 41%.



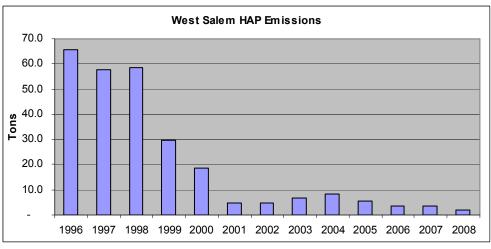
#### **Holmen's 2009 Objectives and Targets:**

**Objective 1:** Reduce facility energy use.

Target: Reduce natural gas/LPG use by 5% CY 2009 vs. CY 2008.


Target: Reduce electricity use by 5% CY 2009 vs. CY 2008.

**Objective 2:** Reduce solid waste generation by 5% CY 2009 vs. CY 2008.


**Objective 3:** Improve plant product yield by achieving yields as reflected in Urgent Turnaround Projects.

**Appendix 3: West Salem Air Emissions** 

|                  | 1996     | 1997      | 1998   | 1999   | 2000   | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|------------------|----------|-----------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| VOCs (tons/year) | 171.33   | 159.90    | 157.00 | 85.00  | 61.30  | 43.0  | 31.0  | 44.7  | 47.0  | 50.1  | 52.3  | 31.7  | 24.3  |
| NOx              | 1.50     | 2.08      | 2.58   | 1.78   | 2.04   | 2     | 2.06  | 1.10  | 2.09  | 1.95  | 1.80  | 1.89  |       |
| СО               | 0.34     | 0.47      | 1.43   | 1.13   | 1.45   | 1.53  | 1.55  | 0.80  | 1.07  | 1.01  | 0.90  | 0.99  |       |
| CLEAN AIR ACT CH | HEMICALS | S (lb/vr) |        |        |        |       |       |       |       |       |       |       |       |
| CHEMICAL NAME    | 1996     | 1997      | 1998   | 1999   | 2000   | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
| Glycol Ethers    | 7,964    | 13,749    | 16,931 | 13,327 | 11,010 | 6,497 | 5,312 | 6,728 | 9,400 | 4,740 | 3,400 | 4,800 | 3,000 |
| MEK              | 30,969   | 24,648    | 45,173 | 29,385 | 20,423 | 352   | 1,489 | 2,276 | 2,320 | 1,680 |       |       |       |
| Methanol         | 6,381    | 6,415     | 3,554  | 397    | 76     | 181   | 169   | 209   | 140   | 200   |       | 200   |       |
| Triethylamine    |          |           | 255    | 581    | 1,956  | 1,606 | 433   | 159   | 300   | 80    |       |       |       |
| 2,2,4 Trimethyl- |          |           |        |        |        |       |       | 106   | 240   | 260   | 200   |       |       |
| *Toluene         | 37,071   | 13,191    | 5,135  | 3,278  | 816    | 596   | 1,421 | 3,090 | 3,340 | 3,680 | 2,200 | 1,400 | 800   |
| *Xylene          | 21,423   | 22,804    | 21,478 | 6,389  | 1,472  | 177   | 335   | 414   | 620   | 260   | 600   | 200   | 200   |
| Vinyl Acetate    |          |           | 198    | 106    | 31     | 9     |       |       |       |       |       |       |       |
| *Ethyl Benzene   | 3,601    | 6,660     | 7,951  | 2,677  | 671    | 176   | 72    | 179   | 80    |       | 200   |       |       |
| *MIBK            | 23,717   | 26,197    | 15,028 | 3,027  | 660    | 35    | 1     |       |       | 60    |       |       |       |
| *Naphthalene     | 10       | 33        | 128    | 117    | 42     | 107   | 72    | 41    | 40    | 80    | 200   | 200   | 200   |
|                  | 65.6     | 57.6      | 58.6   | 29.8   | 18.7   | 4.9   | 4.7   | 6.8   | 8.4   | 5.5   | 3.4   | 3.4   | 2.1   |



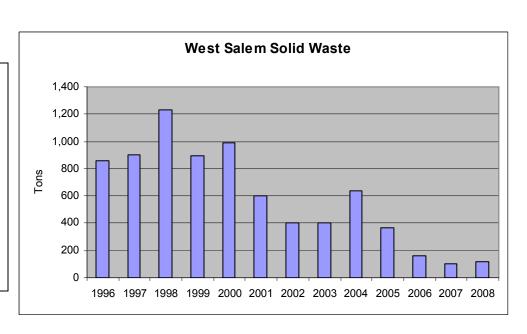
A 23% reduction in 2008. Improving process yields reduced the number of parts that were rejected for quality reasons contributed to this reduction. Changes in job mix and reduced production were also a factor.



HAP emissions decreased by 38%. This was mainly due to changes in job mix and reduced production.

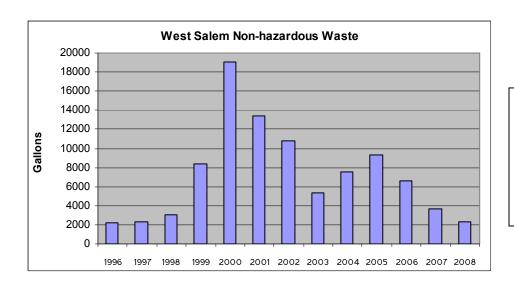
**Appendix 3: West Salem Hazardous Waste Generation** 

|                                               |     | 1996   | 1997   | 1998   | 1999   | 2000   | 2001  | 2002  | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
|-----------------------------------------------|-----|--------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Solvent<br>Waste<br>Solvent<br>Waste Dis-     | gal | 30,470 | 22,808 | 19,363 | 10,644 | 6,240  | 2,184 | 1,595 | 2,200 | 2,475 | 2,750 | 2,475 | 1,815 | 1,100 |
| tilled Off –site<br>for Reuse<br>Liquid Coat- | gal | NA     | NA     | NA     | NA     | 3,120  | 2,080 | 2,349 | 2,536 | 2,384 | 2,772 | 4,188 | 3,371 | 2,700 |
| ing Waste<br>Solid Coating                    | gal | 880    | 2,695  | 9,075  | 6,655  | 3,685  | 1,815 | 1,100 | 1,100 | 1,870 | 1,870 | 1,925 | 1,320 | 715   |
| Waste<br>Waste Absor-                         | gal | 770    | 990    | 5,445  | 2,035  | 935    | 550   | 440   | 550   | 550   | 385   | 385   | 330   | 220   |
| bents                                         | gal | 110    | 165    | 165    | 0      | 55     | 55    | 0     | 55    | 0     | 55    | 55    | 0     | 0     |
| Total                                         | gal | 32,230 | 26,658 | 34,048 | 19,334 | 14,035 | 6,684 | 5,484 | 6,441 | 7,279 | 7,832 | 9,028 | 6,836 | 4,735 |




31% reduction in 2008. Reductions were achieved by reviewing how waste was generated and ensuring that people followed the most efficient procedures. This is also reflective of a decrease in sales in 2008.

#### **Solid Waste**

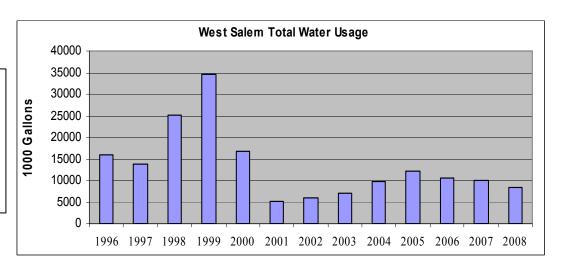

tons 1,235 

Solid waste generation increased by 17%. This was partially the result of the collapse of the plastic recycling market. For a period of several months there was no outlet for the recycled plastics. When a new recycler was found some materials that were previously recycled now had to be discarded as waste. Reducing solid waste generation is an environmental objective for 2009.



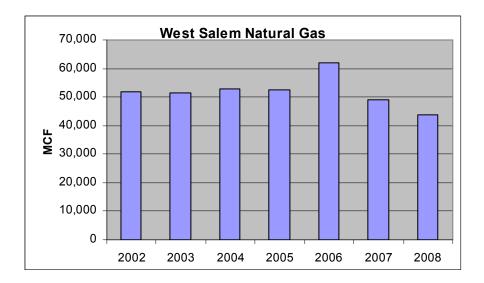
#### **Appendix 3: West Salem**

| Non-Hazardous    |       |       |       |       |       |        |        |        |       |       |       |       |       |       |
|------------------|-------|-------|-------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|
| Waste            | Unit  | 1996  | 1997  | 1998  | 1999  | 2000   | 2001   | 2002   | 2003  | 2004  | 2005  | 2006  | 2007  | 2008  |
| Mask Washer      |       |       |       |       |       |        |        |        |       |       |       |       |       |       |
| Waste            | gals. | 2,236 | 2,184 | 520   | 0     | 0      | 0      | 0      | 0     | 990   | 1,870 | 0     | 0     | 0     |
| Damascene        |       |       |       |       |       |        |        |        |       |       |       |       |       |       |
| Sludge           | gals. | 0     | 0     | 52    | 110   | 884    | 275    | 275    | 110   | 110   | 55    | 275   | 550   | 385   |
| Waterbase Paint  | gals. | 0     | 0     | 0     | 8,216 | 18,148 | 13,090 | 10,319 | 3,750 | 4,840 | 5,610 | 5,170 | 3,080 | 1,925 |
| Oil Absorbents   | gals. | 0     | 0     | 0     | 0     | 0      | 0      | 55     | 1,430 | 1,650 | 1,815 | 1,155 | 0     | 0     |
| Oily Water Waste | gals. | 0     | 0     | 0     | 0     | 0      | 0      | 110    | 0     | 0     | 0     | 0     | 0     | 0     |
| Antifreeze       | gals. | 0     | 110   | 0     | 0     | 0      | 0      | 55     | 0     | 0     | 0     | 0     | 0     | 0     |
| Total            |       | 2,236 | 2,294 | 3,072 | 8,326 | 19,032 | 13,365 | 10,814 | 5,290 | 7,590 | 9,350 | 6,600 | 3,630 | 2,310 |



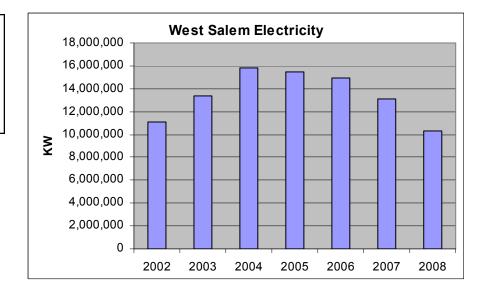

36% reduction in 2008. Improvements in managing mask washer waste and a decrease in clean up from waterbased paints contributed to this improvement.

#### **Water Use**


1996 2000 2001 2004 2008 1997 1998 1999 2002 2003 2005 2006 2007 1000 **Gallons** 15,842 13,713 25,105 34,725 16,653 5,011 6,033 7,031 9,715 12,270 10,669 9,893 8,498

14% reduction in 2008. In 2008 NEC concentrated on implementing the use of a phosphate free cleaner for aluminum. This was successful.




### Appendix 3: West Salem Energy Use

|                   | 2002       | 2003       | 2004       | 2005       | 2006       | 2007       | 2008       |
|-------------------|------------|------------|------------|------------|------------|------------|------------|
| Natural Gas (MCF) | 51,938     | 51,613     | 52,925     | 52,409     | 61,905     | 49,357     | 43,671     |
| Electricity (KWH) | 11,083,000 | 13,329,000 | 15,784,000 | 15,438,000 | 14,979,000 | 13,139,000 | 10,339,000 |

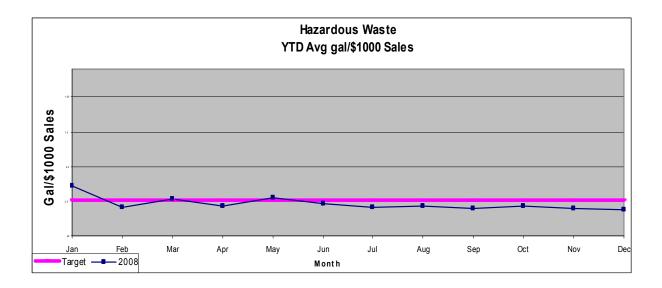


11% reduction in 2008. These reductions were due to decreased use of ovens and an overall reduction in production.

21% reduction in 2008. Projects included decreasing weekend and night lighting, installing a barrel heating system on a molding press and a comprehensive air leak audit.



#### **Appendix 3: West Salem's Objectives and Targets Program**


#### Results for 2008

**Objective 1:** Implement the use of a phosphate free cleaner for aluminum.

The facility successfully implemented the use of this cleaner. Phosphate discharge to the POTW was reduced by 69%.

**Objective 2:** Reduce facility hazardous waste generation by achieving as hazardous waste ratio of 0.258 gallons of hazardous waste/\$1000 Sales for CY 2008.

The facility achieved as hazardous waste ratio of 0.192 gallons of hazardous waste/ \$1000 Sales for CY 2008.



**Objective 3:** Reduce facility energy use by implementing three significant energy savings projects by 12/31/08.

Due to financial constraints West Salem was only able to implement two projects in 2008.

- 1. Reduced weekend and night lighting.
- 2. installing a barrel heating system on a molding press.

**Objective 4:** Improve plant product yield by achieving yield improvements as reflected in turnaround projects.

West Salem management identified 20 priority jobs on which to focus efforts for yield improvement. These improvements resulted in a significant reduction in the use of related source materials and energy.

# Appendix 3: West Salem's Objectives and Targets Program - Continued West Salem's 2009 Objectives and Targets:

Objective 1: Reduce solid waste generation by achieving a Solid Waste ratio of 0.060 tons of solid waste/\$10,000 Sales for CY 2009. (Note: this ratio represents a 5% reduction from 2008 waste generation.)

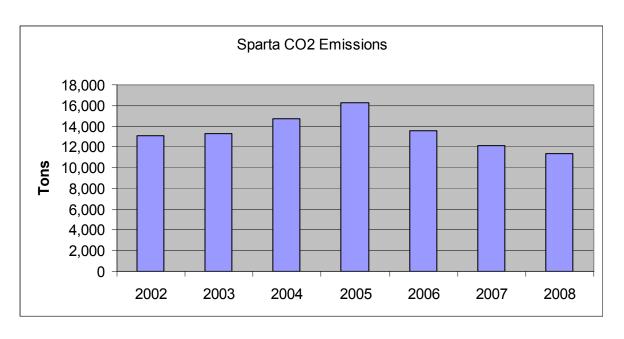
Objective 2: Reduce energy use by achieving a electricity use ratio of 0.527 1000 KWH/\$1000 Sales for CY 2009.

Objective 3: Reduce facility energy use by achieving a Natural Gas/LPG ratio of 2.24 MMBTU/\$1000 Sales for CY 2009.

(Note: Both energy ratios also represents a 5% reduction from 2008.)

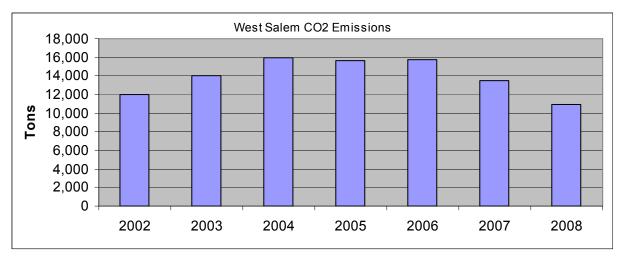
Objective 4: Reduce hydraulic oil use. The first target is to evaluate and submit a report to management by 4/30/2009.

A numeric or project target will be considered after the report is complete.

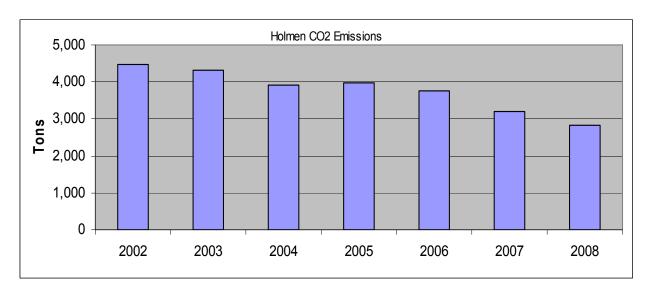

#### **Appendix 4: Greenhouse Gas Emissions**

For Northern Engraving the primary source of greenhouse gas emissions is from the use of energy in its manufacturing facilities. Carbon dioxide  $(CO_2)$  is directly emitted by burning of natural gas at NEC facilities. Use of electricity results in the emission of  $CO_2$  at the generating facility, thus use of electricity results in indirect emissions of  $CO_2$ .

For NEC, changes in CO<sub>2</sub> emissions are associated with changes in the amount of energy used by the corporation. Each NEC facility has an environmental target to reduce energy use. CO<sub>2</sub> emissions decreases are proportional to the energy savings resulting form the environmental programs as each facility.


#### **Sparta**

|            | <u>2002</u> | <b>2003</b> | <u>2004</u> | <u> 2005</u> | <u> 2006</u> | <u>2007</u> | <u> 2008</u> |
|------------|-------------|-------------|-------------|--------------|--------------|-------------|--------------|
| MMBTU      | 99,778      | 97,380      | 110,904     | 114,288      | 97,168       | 88,792      | 88,289       |
| tons CO2   | 5,737       | 5,599       | 6,377       | 6,572        | 5,587        | 5,106       | 5,077        |
| 1000KWh    | 9,055       | 9,408       | 10,308      | 11,928       | 9,806        | 8,688       | 7,726        |
| tons CO2   | 7,362       | 7,649       | 8,380       | 9,697        | 7,972        | 7,063       | 6,281        |
| Total Tons | 13,099      | 13,248      | 14,757      | 16,269       | 13,559       | 12,169      | 11,358       |
| % Change   |             | 1.1%        | 11.4%       | 10.2%        | -16.7%       | -10.3%      | -6.7%        |




Appendix 4: Greenhouse Gas Emissions - Continued

| West Salem     | <u> 2002</u> | <u> 2003</u> | <u>2004</u> | <u> 2005</u> | <u> 2006</u> | <u> 2007</u> | <u> 2008</u> |
|----------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|
| MMBTU          | 52,420       | 55,442       | 54,727      | 53,439       | 62,221       | 49,357       | 43,671       |
| tons CO2       | 3,014        | 3,188        | 3,147       | 3,073        | 3,578        | 2,838        | 2,511        |
| 1000KWh        | 11,083       | 13,319       | 15,786      | 15,438       | 14,979       | 13,139       | 10,339       |
| tons CO2       | 9,010        | 10,828       | 12,834      | 12,551       | 12,178       | 10,682       | 8,406        |
| Total Tons CO2 | 12,025       | 14,016       | 15,981      | 15,624       | 15,756       | 13,520       | 10,917       |
| % Change       |              | 16.6%        | 14.0%       | -2.2%        | 0.8%         | -14.2%       | -19.3%       |



| <u>Holmen</u> | <u> 2002</u> | <u> 2003</u> | <u>2004</u> | <u> 2005</u> | <u> 2006</u> | <u> 2007</u> | <u> 2008</u> |
|---------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|
| MMBTU         | 17,943       | 17,762       | 17,100      | 16,054       | 15,402       | 13,552       | 12,180       |
| tons CO2      | 1,032        | 1,021        | 983         | 923          | 886          | 779          | 700          |
| 1000KWh       | 4,249        | 4,040        | 3,611       | 3,737        | 3,542        | 2,978        | 2,620        |
| tons CO2      | 3,454        | 3,285        | 2,936       | 3,038        | 2,880        | 2,421        | 2,130        |
| Total Tons    | 4,486        | 4,306        | 3,919       | 3,961        | 3,765        | 3,200        | 2,830        |
| % Change      |              | -4.0%        | -9.0%       | 1.1%         | -4.9%        | -15.0%       | -11.6%       |



#### **Appendix 5: The Glossary**

VOCs - Volatile organic compounds: Organic materials that evaporate into the air. Examples: Solvents used for cleanup or present in coatings, inks and sprays.

HAPs - Hazardous air pollutants: A group of hazardous chemicals listed by the EPA. These chemicals are believed to carry a greater health risk. Examples: toluene, xylene, glycol ethers, etc.

RACT – Reasonably available control technology: Application of RACT provisions provide the lowest emission rate that a particular source is capable of achieving by the application of control technology that is reasonably available considering technological and economic feasibility. Such technology may previously have been applied to similar, but not necessarily identical, source categories.

LACT – Latest available control technology: This is required when it is determined that a source is technologically infeasible of controlling 85% of its organic compounds. LACT control measures are determined by the permit writer taking into account the control techniques and operating practices used by similar facilities.

NOx – Nitrogen oxides (Emission amounts are determined by the WDNR from data provided by Northern Engraving Corporation.)

CO – Carbon monoxide (Emission amounts are determined by the WDNR from data provided by Northern Engraving Corporation.)

MCF - Thousand cubic feet: The standard measure of volume for natural gas used.

KWH - Kilowatt-hours: The standard measure for electricity used.

YTD – Year-to-Date

Hazardous Waste – Waste with a chemical composition or other properties that make it capable of causing harm to humans and other life forms when managed improperly or released to the environment. Hazardous wastes are characterized for ignitability, corrosivity, reactivity, and toxicity. The majority of Northern Engraving's hazardous waste is ignitable or corrosive.

Solid Waste – All waste sent to a landfill or the La Crosse County waste-to-energy incinerator.

Questions and requests for additional information should be directed to Mary Goodman at the address below:

Northern Engraving Corporation 803 Black River Street Sparta, Wisconsin 54656 mgoodman@norcorp.com

Submitted March 27, 2009 by Randy Nedrelo